CEWELD DUR 25 Tig

ТҮРЕ	Cobalt based Tig filler metal for CoCrWNi deposits.									
TOEPASSINGEN	Dur 25 combines properties which make it suitable for a number of component applications in the aerospace industry, including parts in established military and commercial gas turbine engines. In modern engines, it has largely been replaced by newer materials such as 188 alloy, and, most recently, 230 [®] alloy, which possess improved properties. Another area of significant usage for Dur 25 is as a bearing material, for both balls and races.									
EIGENSCHAPPEN	Dur 25 (UNS R30605) is a cobalt-nickel- chromium-tungsten alloy that combines excellent high- temperature strength with good resistance to oxidizing environments up to 1800°F (980°C) for prolonged exposures, and excellent resistance to sulfidation. It can be fabricated and formed by conventional techniques, and has been used for cast components. Other attractive features include excellent resistance to metal galling.									
CLASSIFICATIE	EN ISO 14700: ~E Co1									
GESCHIKT VOOR	Wear problems at high temperatures in case high strength is required.									
GOEDKEURINGEN										
LASPOSITIES	PA PB PC PD PE PF PG									
TYPICAL CHEMICAL ANALYSIS OF THE FILLER METAL (%)	С	Ni	Cr	W	Мо	Со	M	In	Si	Fe
	0.1	10	20	15	0.5	Rem.	1	.5	0.3	1.5
MECHANISCHE WAARDEN	Heat Treatment			R _{P0,2} (MPa)	Rr (MF	n Pa)	A5 (%)	Hardness		
	As Welded			825	92	5	1.5	35 HRc		
HERDROGEN	Not required									
GAS ACC. EN ISO 14175	11									